Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO
نویسندگان
چکیده
منابع مشابه
Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO
In this study, the performance and stability of inverted bulk heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by doping zinc oxide (ZnO) with 0-6 wt % cetyltrimethylammonium bromide (CTAB) in the sol-gel ZnO precursor solution. The power conversion efficiency (PCE) of the optimized 3 wt % CTAB-doped ZnO PSCs was increased by 9.07%, compared to a PCE of 7.31% for the pristine ZnO dev...
متن کاملPerformance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layer
In this paper, we reported that ZnO nanoparticles (NPs) film modified with C60 pyrrolidine tris-acid ethyl ester (PyC60) was used as cathode buffer layer in inverted polymer solar cells. The resultant device with a blend of PTB7:PC71BM as photoactive materials exhibited an open-circuit voltage (Voc) of 0.753 V, a short-circuit current (Jsc) of 16.04 mA cm , a fill factor (FF) of 72.5%, and an o...
متن کاملEfficient inverted polymer solar cells
We investigate the effect of interfacial buffer layers—vanadium oxide V2O5 and cesium carbonate Cs2CO3 —on the performance of polymer solar cells based on regioregular poly3-hexylthiophene and 6,6 -phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabric...
متن کاملEnhancing performance of inverted polymer solar cells using two-growth ZnO nanorods
In ordinary polymer solar cells, the short exciton diffusion length causes increasing probability of electron–hole recombination as the active layer thickness exceeds the diffusion length. Hence, the diffusion sets a thickness limitation of the active layer. ZnO nanorods have been used to provide an advantage of electronic path, making it possible to increase the effective thickness of the acti...
متن کاملDevelopment of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells.
This work reports on inverted polymer solar cells (IPSCs) based on highly transparent (>95%), hydrophobic, seedless ZnO nanorods (NRs) as cathode buffers with extremely enhanced electrical characteristics. The transparent NR suspension with stability for more than a year is achieved by adding a small amount of 2-(2-methoxyethoxy) acetic acid (MEA). The ability of the stable nanorod suspension t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials
سال: 2018
ISSN: 1996-1944
DOI: 10.3390/ma11030378